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The influence of flow on symmetric and asymmetric splay state
relaxations

P. D. BRIMICOMBE* and E. P. RAYNES

Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK

(Received 9 June 2005; accepted 20 July 2005 )

We present a detailed discussion of the relaxation of splayed states in untwisted devices — the
asymmetric H state (Ha), and the recently observed symmetric H state (Hs). Experimental
evidence suggests that the Hs does not experience the optical bounce due to induced backflow
usually associated with splay state relaxation. A dynamic model using Leslie–Eriksen–Parodi
theory has been developed, and is used to model the flow within the device during switching.
We show that there is no backflow during Hs relaxation, and that the flow profile is similar to
that present during relaxation of the V state (the state used for pi-cell operation). This flow
enhances the switching of the Hs, leading to a faster relaxation than might be expected. The
influence of the different viscosity parameters is examined in detail, and a comparison
between the experimental and simulated results is given.

1. Introduction

The pi-cell [1] is generally considered to be the fastest

switching nematic liquid crystal device. Originally, this

device was investigated in the V state, also known as the

optically compensated bend (OCB) mode. In this mode

these devices have faster switching times than conven-

tional LC displays, capable of a combined on–off

response time of under 5 ms. With the advent of liquid

crystal flat panel televisions, which require fast switch-

ing electro-optic devices to display high quality video

information, there has been renewed interest in pi-cells

[2–4]. Recently, an even faster switching mode, known

as the symmetric H state, has been observed in splayed

cells [5, 6]. This state has a relaxation time of around

1 ms, making it a prime candidate for high frame rate

display applications.

The geometry of the splayed cell is shown in figure 1.

The liquid crystal material is enclosed between two glass

substrates separated by spacers. The inside surfaces of

these substrates are coated with indium tin oxide (ITO),

a transparent conducting material that acts as the

electrodes. These surfaces are then coated with poly-

imide and rubbed uni-directionally. The device is

assembled such that the rubbing directions are parallel,

producing the surface conditions shown in figure 1 (the

director is tilted by +hp at one surface, and 2hp at the

other).

Figure 1 shows the commonly considered director

profiles that form within pi-cell devices. With no

applied voltage, the liquid crystal within the device

forms a splayed ground state. Above a critical voltage

Vca (around 1 Vrms for most materials), there is a

Fréedericksz transition [7] into one of the asymmetric H

states (Ha). As the voltage is increased further, a bend

state known as the V state becomes energetically
favourable (at Vcv<2.5 Vrms for most materials and

low pretilt devices). The H and V states are not

topologically similar, so a nucleation process is

required, which takes a few seconds to complete. If

the voltage is allowed to fall below Vcv when the device

is in the V state, a transient 180u twisted state forms [1],

which nucleates into the H state over the course of a few

seconds. Typically, the pi-cell is operated between
high and low voltage V states, using it as a tunable

birefringence device with the rubbing directions at 45u
to crossed polarizers.

Towler and Raynes [6] observed that after short

pulses of applied voltage (e.g. 2 ms burst of 6 Vrms), a

splayed device exhibits a fast relaxation of around 1 ms.

This fast relaxation is due to the formation of the

symmetric H state (Hs), which is shown in figure 2. In
simple terms, this state is similar to two half-thickness

devices in the Ha (as shown in figure 2). This

simplification introduces a no-slip condition at the

centre of the device, which we will show is incorrect.

Most standard liquid crystal devices (i.e. Frée-

dericksz, TN and STN devices) are well known to exp-

erience a phenomenon known as backflow (otherwise

known as the kickback effect) [1, 8–10]. When these
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devices relax from a high voltage state to a lower

voltage state, the flow-induced torque at the centre of

the device causes over-rotation of the director (i.e. it tilts

past 90u) before relaxing to its final position. This

produces optical bounce (a hump in the transmission

curve). Bos demonstrated experimentally that the V

state does not experience backflow [1], which was then

confirmed by the modelling carried out by Walton and

Towler [11].

2. Experimental observations

Figure 3 shows the measured transmission through a pi-

cell as it relaxes from high voltage to zero voltage in

both the Hs and the Ha. The device was placed with the
rubbing direction at 45u to crossed polarisers, appearing

bright when there is no applied voltage. The light source

used was a 632.8 nm HeNe laser. Since the retardation

of the device in the ground state is less than p/2, the

transmission decreases monotonically as the voltage is

increased. The device has a nominal thickness of 2 mm, a

pretilt of 2u, and is filled with ZLI-1132 (Merck), whose

material parameters are listed in table 1. The Hs
relaxation was obtained by applying a 2.5 ms pulse of

a 10 kHz 7 Vrms square wave, and the Ha by applying a

250 ms pulse of the same waveform.

Ignoring flow, the relaxation time of standard liquid

crystal devices is proportional to the square of

the thickness (trel3d2). If the Hs behaves like two

half-thickness Ha devices, then 46trel(Hs)5trel(Ha).

Figure 3 (a) shows that the relaxation of the Hs is

indeed much faster than that of the Ha. The time to the

90% level is 0.85 ms for the Hs, and 3.65 ms for the Ha.

Figure 3 (b) shows the same data, but with the time axis
of the Ha relaxation scaled by a quarter. From this plot,

it is clear that the relaxation of the Ha is more than four

times slower than that of the Hs (4.3 times slower to the

90% level). The non-linearity in the first millisecond of

the Ha relaxation suggests that backflow is present.

This non-linearity does not appear during the Hs

relaxation, possibly accounting for the fact that this

relaxation is more than four times faster than that of the
Ha. In order to confirm this hypothesis, a dynamic

model has been developed.

3. Modelling technique

The approach taken to model the device is based on

Leslie–Eriksen–Parodi theory [12–14] using the van

Doorn/Berreman simplification [8, 9]. Since we will only

consider the H and V states in pi-cells, we can assume

that there is no twist, and therefore the only variation in

the director is the tilt from the horizontal, h. The

equations of motion for this system are shown below
(the derivation is given in appendix A).

Figure 2. The symmetric H state (Hs): V50 (left), V .Vcs

(centre and right). Right: simplification of the Hs as two half-
thickness Fréedericksz devices.

Figure 1. The commonly known states that form in splayed
nematic devices. Dotted lines indicate nucleation processes.
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Y z, tð Þ~c1

:
h z, tð Þzb2 z, tð Þv0x z, tð Þ ð1Þ

~szx tð Þ~b2 z, tð Þ
:
h z, tð Þzb1 z, tð Þv0x z, tð Þ ð2Þ

where

Y z, tð Þ~ K11 cos2 hzK33 sin2 h
� �

h00

zsin h cos h K33{K11ð Þ h02 ze0eE2
z z, tð Þ

h ið3Þ

b1 z, tð Þ~ 1

2

2a1 sin2 h cos2 hza2 cos2 h{sin2 h
� �

z2a3 cos2 hza4za5

" #

ð4Þ

b2 z, tð Þ~a3 cos2 h{a2 sin2 h ð5Þ

c1~a3{a2: ð6Þ

Dashes indicate differentials with respect to z (perpen-

dicular to the substrates), and dots indicate differentials

Figure 3. (a) unscaled Ha and Hs relaxations; (b) Ha time axis is scaled by 0.25, Hs is unscaled. Optical bounce is only present in
Ha.
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with respect to time. K11 and K33 are the liquid crystal

elasticities associated with splay and bend respectively;

a terms are the Leslie viscosities [12]; De is the dielectric

anisotropy of the liquid crystal material; vx is the fluid

velocity in the rubbing direction; and szx is the only non-

zero component of the stress tensor (see appendix A).

Ez(z, t) is the local electric field in the z direction and is

found from the following integral:

Ez z, tð Þ~ 1

e0ezz

� �
V

Ð d

0
dz

e0ezz

 !

ð7Þ

where ezz is given by

ezz~e\ cos2 hzeE sin2 h: ð8Þ

Assuming that the fluid velocity at the surfaces is zero,

we can obtain the value of ~szx tð Þ by rearranging

equation (A12) to make v9x(z, t) the subject, and

integrating through the thickness of the device, d:

ðd

0

v0x z, tð Þ dz~0 ð9Þ

[0~~szx tð Þ
ðd

0

dz

b1 z, tð Þ{
ðd

0

b2 z, tð Þ
:
h z, tð Þ

b1 z, tð Þ dz: ð10Þ

Rearranging to make ~szx tð Þ the subject,

~szx tð Þ~
Ð d

0

b2 z, tð Þ
:
h z, tð Þ

b1 z, tð Þ dz
Ð d

0
dz

b1 z, tð Þ

: ð11Þ

The computational process for solution is as follows.

(1) Find an initial director tilt profile, h(z, 0) using

equation (A7) with vx9 set to zero, and guess an

initial
:
h z, 0ð Þ profile (e.g. zero for all z).

(2) For the current director profile, calculate Ez(z, t),

Y(z, t), b1(z, t), and b2(z, t) using equations (7),

(3), (4) and (5), respectively. Find h9(z, t) and

h0(z, t) using difference methods.

(3) Find ~szx tð Þ from equation (11).

(4) Find v9x(z, t) using equation (2).

(5) Find
:
h z, tð Þ using equation (1).

(6) Iterate steps (3) to (5) until the value of ~szx tð Þ
converges.

(7) Set trt+Dt; find vx(z, t) by integrating v9x(z, t);

update h(z, t+Dt) using an Euler method, or

similar; return to step (2).

As observed by Walton and Towler [11], this process

can be simplified in the case of the V state. In this state,

b1(z, t) and b2(z, t) are symmetric and
:
h z, tð Þ and v9x(z,

t) are antisymmetric about the centre of the device

(z5d/2). Thus,

ð
d
2

0

b2 z, tð Þ
:
h z, tð Þ dz~{

ðd

d
2

b2 z, tð Þ
:
h z, tð Þ dz ð12Þ

ð
d
2

0

b1(z, t)v0x(z, t) dz~{

ðd

d
2

b1(z, t)v0x(z, t) dz: ð13Þ

In this special case, integrating equation (2) with respect

to z between 0 and d we have

~szx tð Þ~ 1

d

ðd

0

b2 z, tð Þ
:
h z, tð Þ dzz

ðd

0

b1 z, tð Þv0x z, tð Þ dz

0

@

1

A

~0:

The symmetry of the Hs also satisfies this condition.

The computational process in these two cases can now

be simplified by removing the iterative step to find
~szx tð Þ, since its value is known, i.e. steps (3) and (6)

above can be removed.

The simulations presented in this paper all use the

device parameters described in § 2, and the material

parameters given in table 1 unless explicitly stated.

Since the viscosity parameters of ZLI-1132 have not

been measured, those of MBBA have been used as a

first approximation (see table 1).

4. Ha relaxation

Before the relaxation of the Ha can be modelled, the valid

director profile at the high voltage state must be found. A

seed profile with the correct boundary conditions

Table 1. The physical parameters used in the simulations
[15].

Liquid crystal Parameter Value

ZLI-1132 K11 10.8 pN
K33 26.5 pN
eI 17.4
e) 4.6
nI 1.6332
n) 1.4926

MBBA a1 6.5 mPa s
a2 277.5 mPa s
a3 21.2 mPa s
a4 83.2 mPa s
a5 46.3 mPa s
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(h(0, t)5hp and h(d, t)52hp) and some asymmetry about

the centre of the device will converge on the Ha (if the

seed profile is exactly symmetric, then the simulation will

converge on the Hs, since there is nothing to drive the

device into one or other of the Ha states).

Figure 4 shows a simulation of Ha relaxation from

7 Vrms to 0 Vrms. Over-rotation of the central director due

to backflow [8, 9] is clearly visible from the director profile

plot, figure 4 (a), where the director in the centre of the

device rotates past the 90u tilt angle. This over-rotation

causes the optical bounce in the light transmission plot,

figure 4 (c). When the flow terms are set to zero, the

optical bounce disappears, and the relaxation is smooth.

The Ha director profile is very similar to that in a

Fréedericksz device (there is a slight asymmetry in the Ha

profile not present in the Fréedericksz device).

Unsurprisingly, therefore, the flow during Ha relaxation,

figure 4 (b), shares many characteristics with that during

Fréedericksz device relaxation [16], but with a slight

asymmetry. The simulated relaxation time to the 90%

level is 2.40 ms when flow is included, and 2.72 ms when it

is ignored, indicating that the flow decreases the relaxa-

tion time, even though there is some backflow present.

It should be noted that backflow is only present with

relaxation from relatively high applied voltages

(.5 Vrms), when the tilt at the centre of the device

approaches 90u. At lower voltages, there is no backflow,

and therefore no optical bounce.

5. Hs relaxation

Figure 5 shows the Hs relaxation from 7 Vrms to 0 Vrms.

The initial director profile is found using a seed profile

with the same boundary conditions as the Ha, and

perfect symmetry about the centre of the device. The

velocity graph figure 5 (b), shares many features with

that of the V state [11]. Since ~szx tð Þ~0, as a

consequence of equation (A9), and
:
h 0, tð Þ~

:
h d, tð Þ~0

(the strong anchoring condition), vx9(0, t)5v9x(d, t)50

from equation (2). This can be seen in figure 5 (b), since

the gradient of the velocity profiles is zero at the

surfaces (note that this is not the case for the Ha, since
~szx tð Þ is non-zero). Since the central director does not

move in the Hs, vx9(d/2, t) is also zero, leading to the

maximum in the flow at the centre of the device.

The presence of significant flow at z/d50.5 influences

the switching behaviour strongly. If the Hs behaved as

two half-thickness Ha devices, then backflow would be

expected in each half of the device. In fact, there is no

over-rotation of the director at z/d50.25 or 0.75, and

the relaxation curve is smooth. The fact that the central

director is free to flow prevents the backflow, and both

halves of the device can relax unimpeded (regardless of

the applied voltage). The simulated relaxation to the

90% switching level is 0.50 ms ms with flow, and 0.67 ms

without.

Figure 4. Ha relaxation from 7 Vrms to 0 Vrms: (a) director
distribution, (b) flow profile in the device, and (c) switching
based on light transmission.
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6. Hs and Ha relaxation comparison

Figure 6 shows a comparison of the modelled transmis-

sion through the device during Hs and Ha relaxation,
with the Ha time axis scaled by a quarter. Simulations

where flow has been ignored are shown, as well as those

where the flow has been included.

With no flow, the relaxation time of the Ha is 4.06

times slower than that of the Hs (the two transmission

curves in figure 6 (b) are almost coincident). The reason

that Ha is not four times slower, as predicted, is due to

the presence of a pretilt. The Ha surface conditions are

hp at one surface, and 2hp at the other. If the Hs is

considered as two half-thickness Ha devices, the surface

conditions of each ‘sub-device’ are now ¡hp at one face,
and h50 at the other.

When flow is considered the relaxation of both states

is enhanced, as could be seen in figures 4 (c) and 5 (c).

This enhancement, however, is more significant in the
Hs, leading to the faster than anticipated relaxation

shown in figure 6 (a) (the relaxation time of the Ha is

4.8 times longer than that of the Hs).

7. Influence of the viscosity parameters

For ease of interpretation, the Miesowicz viscosities
[17] have been used in this study as opposed to the Leslie

viscosities (the relationship between the Miesowicz and

Leslie viscosities is given in appendix B). There is some

inconsistency in the labelling of these viscosities

(particularly of g1 and g2), but we will use the Helfrich

notation [18]. There are four shear viscosities (g1, g2, g3,

and the ‘Helfrich coefficient’ g12), and one rota-

tional viscosity (c1). The flows associated with these
viscosities are shown in figure 7. For a calamitic

nematic, g1.g3.g2 because of the shape of the

molecules.

Since there is no twist, g3 does not influence the
switching (during relaxation, the director has no

component perpendicular to both the flow gradient

and the flow direction). Typically, measured values of

g12 are small, but can be either positive or negative

(e.g. g12(MBBA)56.5 mPa s [17], g12(5CB)526.6 mPa s

[19]).Thus there are four viscosity coefficients that affect

the relaxation: g1, g2, g12, and c1. The influence of the

vicosity parameters on the Ha and Hs relaxations are
shown in figures 8 and 9. The relaxation times are

highly dependent on c1 (the rotational viscosity), but the

precise shape of the transmission curve is defined by the

shear flow viscosities: g1, g2 and g12 (which has a lesser

effect). The relative influence of the shear flow

viscosities will be highly dependent on the applied

voltage, since their effect is dependent on the director

tilt angle in the device.

Figure 5. Hs relaxation from 7 Vrms to 0 rms: (a) director
distribution, (b) flow profile in the device, and (c) switching
based on light transmission.
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Figure 10 shows a comparison between the experi-

mental relaxation curves from 7 Vrms shown in figure 3,

and simulations using fitted viscosity coefficients. The

fitted values of the viscosities found were g15210 mPa s,

g2510 mPa s, g12510 mPa s, and c15140 mPa s (g3 is

unknown, but will lie between g1 and g2). It should be

noted that there is significant degeneracy between the

different viscosity parameters (e.g. increasing g1 has a

similar effect to decreasing g2), and so this is not

a reliable method for measuring the viscosity para-

meters of the liquid crystal. In addition, there are

many parameters that are not known to any signi-

ficant accuracy (e.g. device thickness, pretilt angle).

The fitted parameters have only been included for

completeness.

Figure 6. Simulated Hs and Ha relaxation comparison: (a) ignoring flow, and (b) including flow. The Ha time axes have been
scaled by 0.25.

Figure 7. Flows associated with the Miesowicz viscosities.
Left to right: g1, g2, g3, g4 and c1. The ‘Helfrich coefficient’
g1254g422(g1+g2). Flow is represented by the white arrows.
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8. Conclusions

The relaxation of pi-cells in the H states has been shown

to be highly influenced by the fluid flow during

switching. We have demonstrated through experimen-

tation and modelling that the Hs does not experience

backflow during relaxation. This is due to thesymmetry

of this state, which is similar to that of the V state. The

Ha experiences backflow similar to that in Fréedericksz

devices. The flow during Hs relaxation enhances the

switching speed, leading to a faster relaxation time than

would be anticipated (0.85 ms to the 90% level for a

2 mm device filled with ZLI-1132). In both the Ha and

Hs, the overall relaxation time is governed by c1, and

the precise shape of the transmission curve is influenced

by both g1 and g2.

Figure 9. Simulated Ha relaxation from 7 Vrms to 0 Vrms, varying the viscosity parameters.

Figure 8. Simulated Hs relaxation from 7 Vrms to 0 Vrms, varying the viscosity parameters.
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Appendices

A. Derivation of the dynamic equations

The free energy of the system is the sum of the Frank

elastic energy [20], and the electrostatic energy (ignoring

flexoelectric effects and assuming strong anchoring of

the director at the surfaces):

L~
1

2

K11 cos2 hzK33 sin2 h
� �

Lh
Lz

� �2

{E2
z e0 De sin2 hze\
� �

" #

: ðA1Þ

The calculus of variations can then be used to find the

first order variation of this free energy with respect to

the director tilt angle, h. We assume that the pixel is

large, so any changes in the x and y directions can be

ignored:

dL

dh
~

L
Lz

LL

L
Lh

Lz

� �

0

BB@

1

CCA{
LL

Lh
: ðA2Þ

The rate of change of the free energy of the system must

equal the rate of change of dissipated energy,

D:

dL

dt
~

dL

dh

dh

dt
~D: ðA3Þ

Substituting for dL/dh using equation (A2) and differ-

entiating with respect to dh/dt,

L
Lz

LL

L
Lh

Lz

� �

0

BB@

1

CCA{
LL

Lh
~

LD

L
Lh

Lt

� � : ðA4Þ

The complete Rayleigh dissipation function for an

anisotropic fluid is given by [21]

D~
1

2
g vj, ivj, izvj, ivi, j

� �
z

1

2
j1 nivk, i{

:
nkð Þ njvk, j{

:
nk

� �

z
1

2
j2 nivi, kz

:
nkð Þ njvj, kz

:
nk

� �

zj3 nivk, iz
:
nkð Þ njvj, kz

:
nk

� �

z
1

2
j4ninjnknpvj, ivp, k,

ðA5Þ

where vi indicates a fluid velocity in a particular

direction, ni are the components of the director, and g
and ji are viscosities (the usual Einstein summation

convention has been used). By application of the large

pixel simplification, assuming no twist, and translating

the viscosity coefficients to the more widely used Leslie

coefficients (see appendix B), equation (A5) simplifies to

D~
1

4

Lvx

Lz

� �2 2a1 sin2 h cos2 hza2 cos2 h{sin2 h
� �

z2a3 cos2 hza4za5

" #

z
Lvx

Lz

Lh

Lt
a3 cos2 h{a2 sin2 h
� �

z
1

2

Lh

Lt

� �2

a3{a2ð Þ:

ðA6Þ

Substituting this into equation (A4), we have the full

Euler–Lagrange equation including dissipative terms:

:
h a3{a2ð Þ~sin h cos h K33{K11ð Þ h02 ze0DeE2

z

h i

z K11 cos2 hzK33 sin2 h
� �

h00

{v0x a3 cos2 h{a2 sin2 h
� �

ðA7Þ

where dashes indicate differentials with respect to z, and

dots indicate differentials with respect to t. Often, flow

is ignored when modelling nematic devices, and in this

case, equation (A7) can be used to solve for
:
h by setting

vx950. When flow is considered, however, there are two

unknowns (
:
h and vx9), but only one equation so another

equation is required.

In general, the Navier–Stokes equation for an

anisotropic fluid is given by

r
:
vi~Fizsji, j ðA8Þ

where r is the density of the fluid,
:

vi~Lvi=Lt, Fi is the

external body force and sji is the stress tensor. The

external body forces are assumed to be negligible, so

Fi50. In addition, any inertial terms—the left hand side

of equation (A8)—act over a timescale much shorter

than the LC reorientation (the Berreman/van Doorn

simplification [8, 9]). The Navier–Stokes equation,

equation (A8) reduces to

sji, j~0: ðA9Þ
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The stress tensor can be split into two portions:

sji~{pdjiz ~sji: ðA10Þ

The term 2pdji is due to the static pressure, which is

assumed to be zero. ~sji is the dynamic portion of the

stress tensor, and can be found from the Rayleigh

dissipation function [21]:

~sji~
LD
Lvi, j

: ðA11Þ

Using the Rayleigh dissipation function for the system

in question, equation (A6), the only non-zero term of ~sji

is ~szx, and this is given by

~s zx~
1

2
v0x

2a1 cos2 h sin2 hza2 cos2 h{sin2 h
� �

z2a3 cos2 hza4za5

" #

z
:
h a3 cos2 h{a2 sin2 h
� �

:

As a consequence of equation (A9), ~szx must be

independent of z (for each time step there is a unique

value of ~szx which is constant for all z).

Using the following relations:

Y z, tð Þ~ K11 cos2 hzK33 sin2 h
� �

h00

z sin h cos h K33{K11ð Þ h02 ze0DeE2
z

h i ðA13Þ

b1 z, tð Þ~ 1

2

2a1 sin2 h cos2 hza2 cos2 h{sin2 h
� �

z2a3 cos2 hza4za5

" #

ðA14Þ

b2 z, tð Þ~a3 cos2 h{a2 sin2 h ðA15Þ

c1~a3{a2 ðA16Þ

we can simplify the notation of equations (A7) and

(A12):

Y z, tð Þ~c1

:
h z, tð Þzb2 z, tð Þv0x z, tð Þ

~szx tð Þ~b2 z, tð Þ
:
h z, tð Þzb1 z, tð Þv0x z, tð Þ: ðA18Þ

B. Viscosity coefficient conversion

The relations between the Vertogen/de Jeu viscosities

and the more widely known Leslie coefficients are

[21]:

j1~
{a2za5

2
ðA19Þ

j2~
a2z2a3za5

2
ðA20Þ

j3~
a2za5

2
ðA21Þ

j4~a1 ðA22Þ

g~
a4

2
: ðA23Þ

The relations between the Miesowicz viscosities and the

Leslie coefficients are [11]:

g1~
{a2za4za5

2
ðA24Þ

g2~
a2z2a3za4za5

2
ðA25Þ

g3~
a4

2
ðA26Þ

g12~a1 ðA27Þ

c1~a3{a2: ðA28Þ

(A12)
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